The Pareto Envelope-Based Selection Algorithm for Multi-objective Optimisation
نویسندگان
چکیده
We introduce a new multiobjective evolutionary algorithm called PESA (the Pareto Envelope-based Selection Algorithm), in which selection and diversity maintenance are controlled via a simple hyper-grid based scheme. PESA's selection method is relatively unusual in comparison with current well known multiobjective evolutionary algorithms, which tend to use counts based on the degree to which solutions dominate others in the population. The diversity maintenance method is similar to that used by certain other methods. The main attraction of PESA is the integration of selection and diversity maintenance, whereby essentially the same technique is used for both tasks. The resulting algorithm is simple to describe, with full pseudocode provided here and real code available from the authors. We compare PESA with two recent strong-performing MOEAs on some multiobjective test problems recently proposed by Deb. We nd that PESA emerges as the best method overall on these problems.
منابع مشابه
Evaluating the Effectiveness of Integrated Benders Decomposition Algorithm and Epsilon Constraint Method for Multi-Objective Facility Location Problem under Demand Uncertainty
One of the most challenging issues in multi-objective problems is finding Pareto optimal points. This paper describes an algorithm based on Benders Decomposition Algorithm (BDA) which tries to find Pareto solutions. For this aim, a multi-objective facility location allocation model is proposed. In this case, an integrated BDA and epsilon constraint method are proposed and it is shown that how P...
متن کاملOptimizing Bi-Objective Multi-Commodity Tri-Echelon Supply Chain Network
The competitive market and declined economy have increased the relevant importance of making supply chain network efficient. This has created many motivations to reduce the cost of services, and simultaneously, to increase the quality of them. The network as a tri-echelon one consists of Suppliers, Warehouses or Distribution Centers (DCs), and Retailer nodes. To bring the problem closer to real...
متن کاملPERFORMANCE-BASED MULTI-OBJECTIVE OPTIMUM DESIGN FOR STEEL STRUCTURES WITH INTELLIGENCE ALGORITHMS
A multi-objective heuristic particle swarm optimiser (MOHPSO) based on Pareto multi-objective theory is proposed to solve multi-objective optimality problems. The optimality objectives are the roof displacement and structure weight. Two types of structure are analysed in this paper, a truss structure and a framework structure. Performance-based seismic analysis, such as classical and modal push...
متن کاملA hybrid DEA-based K-means and invasive weed optimization for facility location problem
In this paper, instead of the classical approach to the multi-criteria location selection problem, a new approach was presented based on selecting a portfolio of locations. First, the indices affecting the selection of maintenance stations were collected. The K-means model was used for clustering the maintenance stations. The optimal number of clusters was calculated through the Silhou...
متن کاملParticle Swarm Optimisation for Feature Selection in Classification: A Multi-Objective Approach
Classification problems often have a large number of features in the datasets, but not all of them are useful for classification. Irrelevant and redundant features may even reduce the performance. Feature selection aims to choose a small number of relevant features to achieve similar or even better classification performance than using all features. It has two main conflicting objectives of max...
متن کامل